Mais combien sont-ils?

« Les méthodes de capture – marquage – recapture sont des méthodes astucieuses d'échantillonnage peu invasives pour évaluer le nombre d'individus dans une population. »

Parent, E., Boreux, J-J., Rivot, E., Ancelet, S. (2020). Une expérience ludique de capture-marquage-recapture pour l'initiation au raisonnement probabiliste indispensable au Statisticien-modélisateur Statistique et Société, 8 (2), pp.9-31. hal-02634655v1

Principe CMR pour estimer une population

- Capturer un certain nombre d'individus.
 - M Les marquer puis les relâcher dans la nature.
 - Recapturer un certain nombre d'individus et compter ceux qui sont marqués dans cet échantillon.

Des hypothèses

PROPORTIONNALITÉ

La proportion d'individus marqués est identique dans l'échantillon de recapture et dans la population totale

FIABILITÉ

Il y a égale probabilité de capture de tous les individus, quels que soient leur sexe, leur âge, leurs précédentes captures.

STABILITÉ

Entre les phases de capture et de recapture, la population n'évolue pas.

Avec ces hypothèses en utilisant la proportionnalité, on estime l'effectif de la population totale :

$$N = \frac{C_1 \times C_2}{C_{21}}$$

 C_1 rats musqués qui sont marqués et remis en liberté.

C₂ rats musqués recapturés :

C₂₁ marqués

 C_{20} non marqués.

Piste verte

Faites l'expérience!

Piste rouge

La méthode ne fonctionne pas lorsqu'on n'a pas de rats musqués marqués dans une recapture. On utilise alors l'estimateur de Schnabel-Chapman

Piste noire

$$N = \frac{(C_1 + 1)(C_2 + 1)}{C_{21} + 1} - 1$$

$$\frac{C_1}{N} \in \left| \frac{C_{21}}{C_2} - \frac{1}{\sqrt{C_2}}, \frac{C_{21}}{C_2} + \frac{1}{\sqrt{C_2}} \right|$$

 $N \in ?$

